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Propagation of Quasi-Static Modes in
Anisotropic Transmission Lines:

Application to MIC Lines
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Abstract —In this paper, we analyze the field propagation in a general

N-condnetor transmission fine embedded in an inhomogeneous and aniso-

tropic medium, through the series expansion of the field in powers of

frequency. The quasi-static approach is deduced as a zero-order approach

upon the field and a first-order approach for the propagation constant. It is

shown that it is even possible to decompose the field into a sum of

propagating modes with a scafar propagation factor.

The speeial case of transmission fines in nonmagnetic media is explicitly

considered. A method to find out the mode characteristics of any open

planar MIC line with anisotropic dielectric substrates is developed and

applied to some MIC structures of interest, specifically broadside edge-

coupled microstrips with inverted and noninverted substrates.

I. INTRODUCTION

L ATELY, transmission lines embedded in inhomoge-

neous and anisotropic media (such as rnicrostrips,

coplanar waveguides, coupled slots, etc.) have received

considerable theoretical and practical interest. These struc-

tures are commonly analyzed under a quasi-static ap-

proach. Nevertheless, there is not, at the moment, any

general study of the limits and most general features of

that approach when it is applied to the general multicon-

ductor transmission line in anisotropic inhomogeneous

media, at least as far as we know.

An analytical justification of the quasi-static approach

for these structures, but in isotropic media, was made by

A. F. dos Santos et al. [1] and by I. V. Linden [2] through

the series expansion in powers of frequency of the field

quantities. In the present paper, we consider the more

general structure mentioned above under the same point of

view in order to generalize those results, if possible. The

special and important case when the medium is nonmag-

netic is explicitly analyzed.

The modal decomposition of propagating electromag-

netic fields arises from the analysis as a consequence of the

symmetry of the inductance and capacitance matrices of

the line. A method to perform that decomposition is pro-

vided. When it is applied to some known MIC lines on

anisotropic substrates, some interesting features appear,

which are developed in the examples.
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Fig. 1. Schematic cross section of a multiconductor transmission

embedded in an inhomogeneous and anisotropic medium.

IL ANALYSIS

A. Field Expansion
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line

Let us consider the general structure in Fig. 1. It is an

N + 1 perfect conductor system, embedded in an inhomo-

geneous anisotropic medium, of which the dielectric per-

mittivit y tensor ~ and magnetic permeability y tensor ~ are

unspecified functions of frequency of the position in the

transverse x – y plane and, eventually, of some external

parameters. The static conductivity of the medium is zero,

and the structure is invariant under translations along the

z-axis.

We suppose that all of the meaningful physical quariti-

ties can be developed as a power series of frequency

A= AO+A1. U+ A2.02+ ”””. ((1)

If a propagation of the kind A = A’(x, y). e-~~z+@l is

imposed, the even coefficients of the complex field vectors

must be real numbers, and the odd ones imaginary num-

bers. This can be deduced from (l), using general consider-

ations on the character of the complex field quantities [2].

The inverse statement is valid for the propagation factor:

the even coefficients are imaginary and the odd coefficients

are real.

Introducing the series expansion (1) in Maxwell’s equa-

tions, the following equations can be deduced for the field
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where

in a v-order approach:

tit X ~t, V= – jBz, v_liiz (2a)

<,x H,, v = jDz, v-liiz (2b)

~lE=, v = – j Z D@t, m-j% XZ,v-l (2c)
k,m

(k+m=v)

~tHz, v = – j ~ ~,fit,m + j~, X ~,,.-, (2d)

(k:rnm=v)

<,. D*, V= j ~ ~kDz. rn
(2e)

(k!hm=v)

Gt. Zt,v=j ~ BkBz,m “
(2f)

(k:hm=v)

D,= ~ ;k.gm ‘ (3a)

(k +kti”= v )

Bv= ~, j7k.rlm (3b]

(k:hm=v)

where the subscript t indicates, as usual, the projection in

the transverse x – y plane, the subscript z the z-compo-

nent, and the subscripts v, k, and m the order of the

coefficients as in (l). From (3), the same properties indi-

cated above for the complex field terms in the series

expansion (1) hold also for the series coefficients of ~ and

F.
The “static” zero-order (v= O) solution of (2) corre-

sponds to transverse electrostatic and magnetostatic fields

(l?,,O = O, Hz,, = O), which can be obtained from the fol-

lowing transverse electric and magnetic (Q, V) potentials:

E,,. = – et+ 6, “:,,.”6,+ = o (4a)

Z,,.= –G,* e,.~-l.e,+ = o. (4b)

If iiZ coincides with a principal axis of iO and ~ ~, it is

also true that Dz,o = BZ,O= O. If ~ and ~ are real and i=

coincides with a principal axis of ~ and ~ in a certain range

of frequencies, all the transverse components of the com-

plex field vectors will be even (and real) functions of

frequency and all the longitudinal components will be odd

(and imaginary) functions of frequency. In this case, the

static approach for the transverse fields holds up to a

second order in u.

B. Quasi-Static Approach: TE&f Modes

The solutions to (2) in the zero-order approach defines

the field in ‘the widely used quasi-static approach. For the

propagation factor, we take v = 1 and integrate (2c) be-

tween A and B (see Fig. 1), and (2d) along a path

enclosing the i th conductor, obtaining, in a similar way as

in [1]

&K= L,,,lJ (5a)

bll = C,,j? (5b)

where ~ is the electrostatic potential at the i th condu~ctor,

referred to the N +1, 1, the magnetost atic intensity on the

i th conductor, and L,, ~ and Cl ~ the inductance and capa-

citance matrices, respectively. All these quantities referred

to the zero-order field obtained from (2) with v = O, or

from (3).

From (5), we obtain now

&~=z.z. vn (6a)

&~n=E.z. Tn (6b)

where the subscript n refers to each of the quasi-static

propagating modes.

We have not yet shown that simultaneous real and

positive solutions to the eigenvalue problems (6) exist.

Nevertheless, if the static conductivity of the medium is

taken to be zero, the first terms in the series expansion of ~

and ~ (i.e., ~0 and ~ ~) must be real and symmetric, since

all ter~s invo&ing losses are functions of frequency [3].

Then L agd C ar~ symmetric (see Appendix). On ~he othe~

hand, as ~ and C have to be positive matrices, ~ and C

must be diagonalizable with the same set of eigenvalues,

being themselves real and positive [5]. Then, there are N

different quasi-static propagating modes, with propagation

factors L@l,n (n =1,2,. . . . N). The quasi-static voltages

and intensities of such modes are given by the eigenvectors

~~ and ~. in (6).

The coupling between the electric and magnetic quasi-

flatic fields can b~ expres>ed through an impedance matrix

~. Only when ~ and ~ commute can each mode be

characterized by a scalar impedance Z. [2]. In the most

general case, both eigenvector progems_(5a) and (5&) do

not have the same solutions, and V. = ~~~, where Z is a

symmetric matrix characterized by [2]

Z= F.F-F. (7)

C. Transmission Lines in Nonmagnetic Media

In a nonmagne~ic medium, ? = ~U, where ~,, is the

inductance matrix for the structure “in vacuum,” th_at is

when the material medium is removed. Furthermore, ZU. ~,,

= l/c2. Taking this into account, (6) and (7) can be

written:
— —

c2” B;, n~? = ~o–l”~”~. (8a)
—

c2B&fn = ~“f%~”~n (n=l,2,-.., N) (8b)

<:l=C%F. Z. (9)

Equations (8) and (9) obviously generalize well-known

equations from elementary theory. Equations (8) and (9)

a~so sho_w that the knowledge of the capacitance matrix

C and ~,, is sufficient to know the circuital properties of
general transmission lines in nonmagnetic media at the

usual frequencies. Propagating modes with Zscalar_imped-

ance occur when common eigenvectors for ~ and ~U exist.

In the most general case, an impedance matrix (9) must be

defined to relate ~~ and ~~.

HI. APPLICATION TO MIC LINES

A. General Method of Analysis

If we restrict ourselves to a quasi-static analysis, the

propagating modes can be analyzed usi~ (8) ~d (9). So,

our principal task is to determine the ~ and C,, matrices

of the structure.
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Fig. 2. General open planar dielectric transmission line of M + 1 con- Thtr4 .btir ‘.KUAL sr” ~

ductors and N + 1 layers, ● il.
E.

1
Recently, the authors have developed a general method (hl

for deterrnhing the static Green’s function for any planar
,-,

open structure with arbitrary anisotropic layers [6] ‘(~ig. 2).

This algo@m permits us to construct a general method to $ >~

evaluate F. 1+ ~— s ~~

First we define the quantities d. ~.

+~
K,L = * ,$SJMPi’_(a):i,jPj(a) ‘a (10) ~ ‘~,)L&#zu

~=lj=l ‘W

where the superscript + indicates a complex conjugate,
(c)

Fig. 3. (a) Coupled pairs of microstfip lines on monoaxic dielectfi”c
and where IV’ is the number of interfaces having conduct- substrate with its optical axis lying parallel to the gronnd plane at an
ing strips, jfii( /3 ) and ~j( ~ ) are the Fourier transforms of arbitrary orientation. (b) Broadside edge-coupledrnicrostrips with an

the true charge densities at ith and jth interfaces, when ‘ inverted substrate of tilted anisotro~ic dielectric. (c) Broadside ed~e-

only t~e Kth and the Lth strips have got a neat charge Q,

and ~i, j ( ~ ) are the transformed Green’s functions that

can be calculated using the algorithm in [6]. These expres-

sions are variational, and provide an accurate method for

evaluating the UK, ~ when appropriate trial functions for

the pi(x) are used. .’.
The UK, ~ are actually e~ectrostatic energies of some

particular charge configurations of the structure. There-

fore, they are related with the elements of the inverse

matrix ~’1 by means of

(ha)

u (+ +Ic-l +C:l
)

K,L= 2 K,K 2 L,L K,L Q2. (llb)

These relations permit us to calculate the ~-1 matrix for

any open structure. Now using (8) and (9), the quasi-static

parameters can be easily calculated.
An interesting consequence of expressions (2) and (3) is

that in the zero-order approach, the fields are determined

only by the projections of the constitutive tensors = and ~

over the transverse x – y plane. This fact permits us to

evaluate the quasi-static characteristic parameters of the

line for an arbitrary orientation of the principal axes,

taking into account only the transverse ten$ors ~~ and ~ ~,

..
coupled microstrips with noninverted substrates of tilted anisotropic

dielectric.

as. long as the expansion (1) is valid. In particular, the

characteristic parameters of- microstrip-like structures on

monoaxic substrates with its optical axis lying parallel to

the ground plane can be calculated from the diagonal

tensor =*. This fact could be useful to vary the line cliar-

acteristics of structures (such as shown in Fig. 3(a)) by

varying the orientation of the strip on the substrate.

B. Example: The Broadside Edge-Coupled Microstrip

Lines

We have chosen this structure because it presents all the

most important features discussed in Section I. The broads-

ide edge-coupled microstrip line with an inverted dielec-

tric substrate (Fig. 3) is a nonsymmetrical” structure with

respect to reflection about the central (y = O) plane, if the

principal axes of :, are tilted in the ~ransve~se x – y plane.
Therefore, the capacitance matrices ~ and @uwill not have

the same set of eigenvectors and will not commute. So, the

usual even–even, even–odd, etc., modes of propagation {do

not exist, nor can a scalar impedance be defined for each

propagating mode.

Nevertheless, the structure remains the same after inver-

sion with respect to the origin of coordinates (x + O, y = O)
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(see Fig. 3). So, using a notation similar to that used in [7],

the four c – c, c – r, r – c, and ~ – r propagating modes

can be defined. If the quasi-static voltage eigenvector of

each mode is defined as the vector whose components are

the voltages at the first, second, etc., strips, then

Vc. c = (~,,%>%>%) (12a)

Vc.w = (U,j%, -u,, -u,) (12b)

F*_c = (u,, -U,,u,,- u,) (12C)

7... = (U7, -U8, -U8, U7) (u, > O) (12d)

and the four propagating modes can be defined by their

four quasi-static phase velocities u~, ~ = l/~,, ~ and by the

four quantities:

R
()

= loglo :c—c (13a)

R
(1

= loglo ~C—T (13b)

R
()

= loglo ~w—c (13C)

R T—’n
()

= loglo j . (13d)

In the particular case in which the projection ~, is

diagonal, RC_C= R=.. = Rw_C= Rw_w= O, and the modes

defined above coincide with the usual even–even,

even–odd, odd–even, and odd–odd modes.

C. Numerical Results

To compute the characteristic parameters of the two

structures analyzed, we have used the method proposed in

this paper with similar trial functions as in [6] for the

charge density on the strips, and the Rayleigh–Ritz proce-

dure to minimize (10). The results have been compared

with previous ones [8]–[10] for the limiting case when ~t is

diagonal, or the medium is isotropic, and are in good

agreement.

Fig. 4 shows the variation of normalized phase velocities

and impedances for coupled microstrips on a sapphire

substrate, cut with its optical axis parallel to the ground

plane, as a function of the angle 6 between the optical axis

and the strip orientation. The behavior of these parameters

is similar to that found in [8], [9] for a substrate tilted

around the direction of propagation.
Figs. 5 and 6 show the variation of the mode phase

velocities and the R factors, respectively, for the broadside

edge-coupled rnicrostrip lines with inverted dielectric sub-

strates of boron nitride, tilted around the direction of

propagation, as a function of the tilting angle. It can be

seen that the R parameters soon deviate from their non-

tilted values (R = O), and that the deviation is strong for

certain modes. These results show that the nontilted

even–even,. ... modes are inappropriate to describe elec-
tromagnetic propagation in this kind of structure with

tilted substrates.

Finally, in Fig. 7, the variation of phase velocities for

propagating even–even, even-odd,..., etc., modes in the

Q
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Fig. 4. Variation of the normahzed mode phase velocities and imped-

ance for each mode in the coupled pairs of microstrips on monoaxic
dielectric with its optical axis parallel to the ground plane, as functions

of the angle between the optical axis and the strip orientation (substrate
sapphire: ($ = 11.6, c; = 9.4).
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Fig. 5. Variation of the R-parameters in the broadside edge-coupled

microstnps with an inverted substrate of boron nitride, as functions of
the tilting angle of the substrate (c? = 5.12, C: = 3.4).

broadside edge-coupled rnicrostrips with noninverted sub-

strates of boron nitride is plotted as a function of the

tilting angle. In this case, the structure behaves as a sym-

metrical coupling of two pairs of coupled microstrips (a
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Fig. 6. Variation of the normalized mode phase velocities in the broad-
side edge-coupled microstrips with an inverted substrate of boron
nitride, as functions of the tilting &tgle (c$ = 5.12, CT = 3.4).
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Fig. 7. Variation of the normalized mode phase velocities in broadside
edge-coupled microstrips with noninverted substrates, as functions of
the tilting angle (cF = 5.12, c: = 3.4).

structure which propagates even and odd modes, even for

tilted substrates, as has been verified), and the usual

even–even,..., modes can propagate, as has been checked.

It has also been verified that the mode characteristics do

not vary if the tilting angles of the two substrates ye the

931

same, or the same but of opposite sign. These results are

expected from the form of Green’s functions in [6].

IV. CONCLUSIONS

An analytical justification of the quasi-static approach

for multiconductor transm@sion lines in inhomogeneous

anisotropic media is made by using the series expansion of

the field in powers of frequency.

It is shown, in a closed form, that it is even possible to

decompose the quasi-static field into a sum of propagating

modes with a scalar ‘propagation factor, and a method to

find out such modes is developed, provided the static

inductance and capacitance matrices of the line are known.

Most MIC lines (except for nonreciprocal devices) are

impressed_on nonmagnetic substrates: In this c~se: tlE

matrices ~ and Cv- I/cz play the same role that ~ and ~

play in the general case. A variational method to compute

? and ?U (and so, to characterize the quasi-static propa-

gating modes) for any open planar dielectric line is devel-

opefl and applied to some known MIC lines when they are

impressed on tilted dielectric substrates. From the general

analysis, it follows that only the projection on the trans-

verse plane of the dielectric tensor (m permeability tensor

in the magnetic case), must be taken into account to

compute the circuital characteristics of the line in a quasi-

static approach. When this projection is not a diagon,al

tensor, it causes broken symmetries. In some analyzed

structures, propagating modes seem to be very sensitive Io

this fact.

APPENDIX

To show the symmetry of the matrix ~, a similar proce-

dure to the one followed in [4] can be used. We first

consider the integral of electrostatic energy U.

(Al.)

extended to all the space between conductors for a portion

Az of the line. The variation of U, can be written

(M)

If the varied field is to be a solution of the electrostatic

problem as well, 3U= can be written (using Green’s theo-

rem)

(A:])

where the integrals are extended over the entire surface of

conductors. Now, taking into account the symmetry of ~0,
the two terms on the right-hand side of (A2) (and (A3)),

are equivalent, and 8U, can be written in the two equiv-

alent forms

8Ue = ~ ~ ~Qi (A4a)
1

NJ, = ~ Q, 8~. (A4h)
i
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Therefore, we can write dU,/dQi = ~ and dU,/d~ = Q,. 17]

Taking this into account, we can write

(A5) ‘8]

and changing the order of deri~ation: Cij = Cji. [9]
To show the symmetry of ~, a dual procedure can be

chosen. We first consider the N loops composed by the i th ~lol

and the N + 1 conductors. The integral of magnetostatic

energy is defined now in terms of the potential vector as
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Taking into account the symmetry of ~0, it can be shown

that the variation 8U~ can be written either in the form

(invariance of the structure along z is considered)

N_Jm= ~@, 81i (A7)
i

or in the form

i

where Ii is the stationary current flowing along the i th

loop, and @i is the magnetic flux through this loop

@i=j~.dI=~~.d~ (through/along ith loop)

(A9)

and the line integral can be chosen along a closed current anisotropic media.

line, that is, along z.

From (A7) and (A8), the symmetry of ~ c= be estab-

lished in the same way that was followed for ~.
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