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Propagatiori of Quasi-Static Modes in
Anisotropic Transmission Lines:
Application to MIC Lines

RICARDO MARQUES AND MANUEL HORNO, MEMBER, IEEE

Abstract —In this paper, we analyze the field propagation in a general
N-conductor transmission line embedded in an inhomogeneous and aniso-
tropic medium, through the series expansion of the field in powers of
frequency. The quasi-static approach is deduced as a zero-order approach
upon the field and a first-order approach for the propagation constant. It is
shown that it is even possible to decompose the field into a sum of
propagating modes with a scalar propagation factor.

The special case of transmission lines in nonmagnetic media is explicitly
considered. A method to find out the mode characteristics of any open
planar MIC line with anisotropic dielectric substrates is developed and

applied to some MIC structures of interest, specifically broadside edge--

coupled microstrips with inverted and noninverted substrates.

I. INTRODUCTION

ATELY, transmission lines embedded in inhomoge-

neous and anisotropic media (such as microstrips,
coplanar waveguides, coupled slots, etc.) have received
considerable theoretical and practical interest. These struc-
tures are commonly analyzed under a quasi-static ap-
proach. Nevertheless, there is not, at the moment, any
general study of the limits and most general features of
that approach when it is applied to the general multicon-
ductor transmission line in anisotropic inhomogeneous
media, at least as far as we know.

An analytical justification of the quasi-static approach
for these structures, but in isotropic media, was made by
A. F. dos Santos er al. [1] and by 1. V. Lindell [2] through
the series expansion in powers of frequency of the field
quantities. In the present paper, we consider the more
general structure mentioned above under the same point of

view in order to generalize those results, if possible. The

special and important case when the medium is nonmag-
netic is explicitly analyzed.

The modal decomposition of propagating electromag-
netic fields arises from the analysis as a consequence.of the
symmetry of the inductance and capacitance matrices of
the line. A method to perform that decomposition is pro-
vided. When it is applied to some known MIC lines on
anisotropic substrates, some interesting features appear,
which are developed in the examples.
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Schematic cross section of a multiconductor transmission line
embedded in an inhomogeneous and anisotropic medium.

Fig. 1.

II. ANALYSIS

A. Field Expanszon

Let us consider the general structure in Fig. 1. It is an
N +1 perfect conductor system, embedded in an inhomo-
geneous anisotropic medium, of which the dielectric per-
mittivity tensor é and magnetic permeability tensor g are
unspecified functions of frequency of the position in the
transverse x—y plane and, eventually, of some external
parameters. The static conductivity of the medium is zero,
and the structure is invariant under translations along the
z-axis.

We suppose that all of the meaningful physical quanti--
ties can be developed as a power series of frequency

(1)

A=A+ Ao+ Ay’ + -

If a propagation of the kind 4= A’(x, y)-e P/ " js
imposed, the even coefficients of the complex field vectors
must be real numbers, and the odd ones imaginary num-
bers. This can be deduced from (1), using general consider-
ations on the character of the complex field quantities [2].
The inverse statement is valid for the propagation factor:
the even coefficients are imaginary and the odd coefficients
are real. .

Introducing the series expansion (1) in Maxwell’s equa-
tions, the following equatipns can be deduced for the field
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in a v-order approach:

vV, X E, ,=— jB. ,_ i, (2a)
§,><H =jD, , i, (2b)
€,Ez,y=—1 Y BE..— ji.X B,y (20)
(k-f;nm'—'v)
VH.,=—j ¥ B, .+ ji.xD,, ., (2d)
(kf;nm=v)
VD= Z BiD. ., (2¢)
(k+m~v)
6:'13:,»:] Z B.B z,m (2f)
(k+m-—v)
where

(3a)

(k+m=v)
§y= E ﬁk Hm (3b)
k,m
(k+m—1/)

where the subscript ¢ indicates, as usual, the projection in
the transverse x—y plane, the subscript z the z-compo-
nent, and the subscripts », k, and m the order of the
coefficients as in (1). From (3), the same properties indi-
cated above for the complex field terms in the series
expansion (1) hold also for the series coefficients of € and
L.

The “static” zero-order (v =0) solution of (2) corre-
sponds to transverse electrostatic and magnetostatic fields

(E, =0, H,,=0), which can be obtained from the fol-

lowing transverse electric and magnetic (¢, ¥) potentials:
Et,O = et(i’ % 'ét,O'Vt¢ =0 (43-)
H,=-v¥ v, i 'v¥=0. (4b)

If %, coincides with a principal axis of €, and p,, it is
also true that D, ,=B, ,=0. If € and p are real and i,
coincides with a pr1nc1pa1 axis of € and i in a certain range
of frequencies, all the transverse components of the com-
plex field vectors will be even (and real) functions of
frequency and all the longitudinal components will be odd
(and imaginary) functions of frequency. In this case, the
static approach for the transverse fields holds up to a
second order in w.

B.  Quasi-Static Approach: TEM Modes

The solutions to (2) in the zero-order approach defines
the field in the widely used quasi-static approach. For the
propagation factor, we take » =1 and integrate (2c) be-
tween 4 and B (see Fig. 1), and (2d) along a path
enclosing the ith conductor, obtaining, in a similar way as
in [1]

(5)

Bi1,=C. VYV, (5b)
where V, is the electrostatic potential at the ith conductor,
referred to the N +1, I, the magnetostatic intensity on the

ith conductor, and L, , and C, , the inductance and capa-
citance matrices, respectively. All these quantities referred
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to the zero-order field obtained from (2) with » =0, or
from (3).
From (5), we obtain now
BE ,J7 7, (6a)
18 1,n"n = I (6b)
where the subscript n refers to each of the quasi-static
propagating modes.

We have not yet shown that simultaneous real and
positive solutions to the eigenvalue problems (6) exist.
Nevertheless, if the static conductivity of the medium is
taken to be zero, the first terms in the series expansion of €
and E (i.e., €, and §,) must be real and symmetric, since
all terms involving losses are functions of frequency [3].
Then L and C are symmetric (see Appendix). On the other
hand, as L and C have to be positive matrices, L and C
must be diagonalizable with the same set of eigenvalues,
being themselves real and positive [5]. Then, there are N
different quasi-static propagating modes, with propagation
factors wB; , (n=1,2,...,N). The quasi-static voltages
and intensities of such modes are given by the eigenvectors
V, and I, in (6).

The coupling between the electric and magnetic quasi-
static fields can be expressed through an impedance matrix
Z. Only when L and C commute can each mode be
characterized by a scalar impedance Z, [2]. In the most
general case, both eigenvector problems (5a) and (5b) do
not have the same solutions, and V, = ZI, where Z is a
symmetric matrix characterized by [2]

L=ZCZ

o hll
l“ll Q“

Q)
C. Transmission Lines in Nonmagnetzc Media

In a nonmagnetlc medium, L= L where L is the
inductance matrix for the structure “in vacuum, » that is,
when the material medium is removed. Furthermore, L, - C,

=1/c% Taking this into account, (6) and (7) can be
written:
¢’ :81 n n=a 152 (8a)
<l I,=C-C I,  (n=12---,N) (8b)
Cl=c¢Z-C-Z. 9)

Equations (8) and (9) obviously generalize well-known
equations from elementary theory. Equations (8) and (9)
also show that the knowledge of the capacitance matrix
C and C, is sufficient to know the circuital properties of
general transmission lines in nonmagnetic media at the
usual frequencies. Propagating modes with a scalar imped-
ance occur when common eigenvectors for C and C, exist.
In the most general case, an impedance matrix (9) must be
defined to relate V, and 1,

II1. APPLICATION TO MIC LINES

A. General Method of Analysis

If we restrict ourselves to a quasi-static analysis, the
propagating modes can be analyzed using (8) and (9). So,
our principal task is to determine the C and C, matrices
of the structure.
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Fig. 2. General open planar dielectric transmission line of M +1 con-
ductors and N +1 layers.

Recently, the authors have developed a general method
for determining the static Green’s function for any planar
open structure with arbitrary anisotropic layers [6] (Fig. 2).
This algorithm permits us to construct a general method to
evaluate C.

First we define the quantities

Z Zf p, ()G, Pi(a)da (10)

i—-l/ 1

where the superscript + indicates a complex conjugate,
and where N’ is the number of interfaces having conduct-
ing strips, §,(B) and p,(B) are the Fourier transforms of

the true charge densities at ith and jth interfaces, when .

only the K'th and the Lth strips have got a neat charge Q,

and G ;(B) are the transformed Green’s functions that
can be calculated using the algorithm in [6]. These expres-
sions are variational, and provide an accurate method for
evaluating the Uy ; when appropnate trial functions for
the p,(x) are used. :

The Uy ; are actually electrostatic energies of some
particular charge configurations of the structure. There-
fore, they are related with the elements of the inverse

matrix C~! by means of '

1 -
Uk, k= ECK,II(Q2 (11a)
1 . 1 . _
UK,L = (ECK,IK + ‘Z“CL,lL + CK,IL)Q2' (11b)‘

These relations permit us to calculate the C~! matrix for
any open structure. Now using (8) and (9), the quasi-static
parameters can be easily calculated.

An interesting consequence of expressions (2) and (3) is
that in the zero-order approach, the fields are determined
only by the projections of the constitutive tensors € and
over the transverse x—y plane. This fact permits us to
evaluate the quasi-static characteristic parameters of the
line for an arbitrary orientation of the principal axes,
taking into account only the transverse tensors €, and g,
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Fig.- 3. (a) Coupled pairs of m1crostr1p lines on monoaxic dielectric
substrate with its optical axis lying parallel to the ground plane at an
arbitrary orientation. (b) Broadside edge-coupled microstrips with an
inverted substrate of tilted anisotropic dielectric. () Broadside edge-
coupled microstrips with noninverted substrates of tilted anisotropic
dielectric. ’

-
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as_long as the expansion (1) is valid. In particular, the
characteristic parameters of-microstrip-like structures on
monoaxic substrates with its optical axis lying parallel to
the ground plane can be calculated from the diagonal
tensor €,. This fact could be useful to vary the line char-
acteristics of structures (such as shown in Fig. 3(a)) by
varying the orientation of the strip on the substrate.

B.  Example:

The Broadside Edge-Coupled Microstrip
Lines ‘

We have chosen this structure because it presents all the
most important features discussed in Section I. The broad-
side edge-coupled microstrip line with an inverted dielec-
tric substrate (Fig. 3) is a nonsymmetrical structure with
respect to reflection about the central (y = 0) plane, if the
principal axes of €, are tilted in the transverse x -y plane.
Therefore, the capacitance matrices C and C, will not have
the same set of eigenvectors and will not commute. So, the
usual even—even, even—odd, etc., modes of propagation do
not exist, nor can a scalar impedance be defined for each
propagating mode.

Nevertheless, the structure remains the same after inver-
sion with respect to the origin of coordinates (x = 0, y = 0)



930 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 10, OCTOBER 1985

(see Fig. 3). So, using a notation similar to that used in [7],
the four c— ¢, ¢ — 7, 7~ ¢, and # — 7 propagating modes
can be defined. If the quasi-static voltage eigenvector of
each mode is defined as the vector whose components are
the voltages at the first, second, etc., strips, then

_c—c= (v1,05,05,01) (12a)
Ve = (03,04, = 04, = 03) (12b)
Vw~c=(05’—v6’v6’—vs) (12¢)
Vo .=(v,,—vg,—vg,05) (v,>0) (12d)

and the four propagating modes can be defined by their
four quasi-static phase velocities vy , =1/8, , and by the
four quantities:

Rc—czlogIO(%;) (138)
v

R, . 10g10(0_4) (13b)

R, .=log,| 2 (130)
6

R'rr—'n loglo(v_;>‘ (13d)

In the particular case in which the projection €, is
diagonal, R,_.=R._.=R,_.=R___ =0, and the modes

defined above coincide with the usual even—even,
even—odd, odd—even, and odd—odd modes.

C. Numerical Results

To compute the characteristic parameters of the two
structures analyzed, we have used the method proposed in
this paper with similar trial functions as in [6] for the
charge density on the strips, and the Rayleigh-Ritz proce-
dure to minimize (10). The results have been compared
with previous ones [8]-[10] for the limiting case when ¢, is
diagonal, or the medium is isotropic, and are in good
agreement.

Fig. 4 shows the variation of normalized phase velocities
and impedances for coupled microstrips on a sapphire
substrate, cut with its optical axis parallel to the ground
plane, as a function of the angle § between the optical axis
and the strip orientation. The behavior of these parameters
is similar to that found in [8], [9] for a substrate tilted
around the direction of propagation.

Figs. 5 and 6 show the variation of the mode phase
velocities and the R factors, respectively, for the broadside
edge-coupled microstrip lines with inverted dielectric sub-
strates of boron nitride, tilted around the direction of
propagation, as a function of the tilting angle. It can be
seen that the R parameters soon deviate from their non-
tilted values (R = 0), and that the deviation is strong for
certain modes. These results show that the nontilted
even—even,..., modes are inappropriate to describe elec-
tromagnetic propagation in this kind of structure with
tilted substrates. ‘ '

Finally, in Fig. 7, the variation of phase velocities for
propagating even—even, even—odd,..., etc., modes in the
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Fig. 4. Variation of the normalized mode phase velocities and imped-
ance for each mode in the coupled pairs of microstrips on monoaxic
dielectric with its optical axis parallel to the ground plane, as functions
of the angle between the optical axis and the strip orientation (substrate
sapphire: e =11.6, ¢} =9.4).
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Fig. 5. Variation of the R-parameters in the broadside edge-coupled
microstrips with an inverted substrate of boron nitride, as functions of
the tilting angle of the substrate (e} = 5.12, € = 3.4).

broadside edge-coupled microstrips with noninverted sub-
strates of boron nitride is plotted as a function of the
tilting angle. In this case, the structure behaves as a sym-
metrical coupling of two pairs of coupled microstrips (a
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Fig. 6. Variation of the normalized mode phase velocities in the broad-
side edge-coupled microstrips with an inverted substrate of boron
nitride, as functions of the tilting angle (e} =5.12, ¢} =3.4).
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Fig. 7. Variation of the normalized mode phase velocities in broadside
edge-coupled microstrips with noninverted substrates, as functions of
the tilting angle (¢} = 5.12, ¢ = 3.4).

structure which propagates even and odd modes, even for
tilted substrates, as has been verified), and the usual
even—even,..., modes can propagate, as has been checked.
It has also been verified that the mode characteristics do
not vary if the tilting angles of the two substrates are the
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same, or the same but of opposite sign. These resulis are
expected from the form of Green’s functions in [6].

IV. CONCLUSIONS

An analytical justification of the quasi-static approach
for multiconductor transmission lines in inhomogeneous
anisotropic media is made by using the senes expansion of
the field in powers of frequency.

It is shown, in a closed form, that it is even possible 1o
decompose the quasi-static field into a sum of propagating’
modes with a scalar propagation factor, and a method 1o
find out such modes is developed, provided the static
inductance and capacitance matrices of the line are known.

Most MIC lines (except for nonreciprocal devices) are
impressed_on nonmagnetlc substrates. In this case, the
matrices C and C,'/c? play the same role that C and L
play in the general case. A variational method to compute

C and C (and so, to characterize the quasi-static propa-
gating modes) for any open planar dielectric line is devel-
oped and applied to some known MIC lines when they are
impressed on tilted dielectric substrates. From the general
analysis, it follows that only the projection on the trans-
verse plane of the dielectric tensor (er permeability tensor
in the magnetic case), must be taken into account to
compute the circuital characteristics of the line in a quasi-
static approach. When this projection is not a diagonal
tensor, it causes broken symmetries. In some analyzed
structures, propagating modes seem to be very sensitive to
this fact. '

APPENDIX

To show the symmetry of the matrix a a similar proce-
dure to the one followed in [4] can be used. We first
consider the integral of electrostatic energy U,

=2 J[[vs-évod

extended to all the space between conductors for a portion
Az of the line. The variation of U, can be written

6U——/f V8¢ eo\'7¢dv+2f/ V¢ eov&l)du
(A2)

If the varied field is to be a solution of the electrostatic

(A1)

. problem as well, 8U, can be written (using Green’s theo-

rem)

U=—ZV9§S& (év

)-ds'+ = Z 3V9§6 (év
(A3)

where the integrals are extended over the entire surface of
conductors. Now, taking into account the symmetry of €,
the two terms on the right-hand side of (A2) (and (A3)),
are equivalent, and 86U, can be written in the two equiv-
alent forms
SU,= V80, (Ada)
1

sU,= ¥ 0,87, (Adb)
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Therefore, we can write dU, /dQ,; =V, and 3U, /dV,=Q,.
Taking this into account, we can write

’U, _ 99,

Az
,

»J

(AS)

and changing the order of derivation: C;; = C;..

To show the symmetry of L, a dual procedure can be
chosen. We first consider the N loops composed by the ith
and the N +1 conductors. The integral of magnetostatic

energy is defined now in terms of the potential vector as
1 S
U,= 2fff(v X A)pot(v xX4)dv.

Taking into account the symmetry of g, it can be shown
that the variation 8U, can be written either in the form
(invariance of the structure along z is considered)

U, = Y. @, 81,

(A6)

(A7)

or in the form

8U, =3 1,89, (A8)
where I, is the stationary current flowing along the ith
loop, and @, is the magnetic flux through this loop

<1>,.=ff1§-d§=¢,4”-df
(A9)

and the line integral can be chosen along a closed current
line, that is, along z. ) _

From (A7) and (A8), the symmetry of L can be estab-
lished in the same way that was followed for C.

(through /along ith loop)
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